A Sixteenth-order Polylogarithm Ladder
نویسندگان
چکیده
منابع مشابه
A S E V Enteenth-order Polylogarithm Ladder A)
Cohen, Lewin and Zagier found four ladders that entail the polylogarithms Lin( k 1 ) := P r>0 kr 1 =r n at order n = 16, with indices k 360, and 1 being the smallest known Salem number, i.e. the larger real root of Lehmer's celebrated polynomial 10 + 9 7 6 5 4 3 + + 1, with the smallest known non-trivial Mahler measure. By adjoining the index k = 630, we generate a fth ladder at order 16 and a ...
متن کاملA seventeenth-order polylogarithm ladder
Cohen, Lewin and Zagier found four ladders that entail the polylogarithms Lin(α −k 1 ) := ∑ r>0 α −kr 1 /r n at order n = 16, with indices k ≤ 360, and α1 being the smallest known Salem number, i.e. the larger real root of Lehmer’s celebrated polynomial α + α − α − α − α − α − α + α + 1, with the smallest known non-trivial Mahler measure. By adjoining the index k = 630, we generate a fifth ladd...
متن کاملElectropolymerization of Acenaphtho[1,2-k]fluoranthene Derivatives: Formation of a New Conductive Electroactive Electrochromic Hydrocarbon Ladder Polymer
Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Communication Electropolymerization of Acenaphtho[1,2-k]fluoranthene Derivatives: Formation of a New Conductive Electroactive Electrochromic Hydrocarbon Ladder Polymer Jeff D. Debad, and Allen J. Bard J. Am. Chem. Soc., 1998, 120 (10), 2476-2477 • DOI: 10.1021...
متن کاملZETA SERIES GENERATING FUNCTION TRANSFORMATIONS RELATED TO POLYLOGARITHM FUNCTIONS AND THE k-ORDER HARMONIC NUMBERS
We define a new class of generating function transformations related to polylogarithm functions, Dirichlet series, and Euler sums. These transformations are given by an infinite sum over the jth derivatives of a sequence generating function and sets of generalized coefficients satisfying a non-triangular recurrence relation in two variables. The generalized transformation coefficients share a n...
متن کاملAn Identity for Sums of Polylogarithm Functions
We derive an identity for certain linear combinations of polylogarithm functions with negative exponents, which implies relations for linear combinations of Eulerian numbers. The coefficients of our linear combinations are related to expanding moments of Satake parameters of holomorphic cuspidal newforms in terms of the moments of the corresponding Fourier coefficients, which has applications i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental Mathematics
دوره 1 شماره
صفحات -
تاریخ انتشار 1992